53 research outputs found

    Bifurcations of attractors in 3D diffeomorphisms : a study in experimental mathematics

    Get PDF
    The research presented in this PhD thesis within the framework of nonlinear deterministic dynamical systems depending on parameters. The work is divided into four Chapters, where the first is a general introduction to the other three. Chapter two deals with the investigation of a time-periodic three-dimensional system of ordinary differential equations depending on three parameters, the Lorenz-84 model with seasonal forcing. The model is a variation on an autonomous system proposed in 1984 by the meteorologist E. Lorenz to describe general atmospheric circulation at mid latitude of the northern hemisphere. ... Zie: Summary

    Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system

    Get PDF
    Tipping points associated with bifurcations (B-tipping) or induced by noise (N-tipping) are recognized mechanisms that may potentially lead to sudden climate change. We focus here a novel class of tipping points, where a sufficiently rapid change to an input or parameter of a system may cause the system to "tip" or move away from a branch of attractors. Such rate-dependent tipping, or R-tipping, need not be associated with either bifurcations or noise. We present an example of all three types of tipping in a simple global energy balance model of the climate system, illustrating the possibility of dangerous rates of change even in the absence of noise and of bifurcations in the underlying quasi-static system.Comment: 20 pages, 8 figure

    Accessing extremes of mid-latitudinal wave activity: methodology and application

    Get PDF
    A statistical methodology is proposed and tested for the analysis of extreme values of atmospheric wave activity at mid-latitudes. The adopted methods are the classical block-maximum and peak over threshold, respectively based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD). Time-series of the ‘Wave Activity Index’ (WAI) and the ‘Baroclinic Activity Index’ (BAI) are computed from simulations of the General Circulation Model ECHAM4.6, which is run under perpetual January conditions. Both the GEV and the GPD analyses indicate that the extremes ofWAI and BAI areWeibull distributed, this corresponds to distributions with an upper bound. However, a remarkably large variability is found in the tails of such distributions; distinct simulations carried out under the same experimental setup provide sensibly different estimates of the 200-yr WAI return level. The consequences of this phenomenon in applications of the methodology to climate change studies are discussed. The atmospheric configurations characteristic of the maxima and minima of WAI and BAI are also examined

    Life cycle assessment of remediation alternatives for dredged sediments

    Get PDF
    The Life Cycle Assessment (LCA) is an ISO standardized and widely used methodology for environmental assessment of products, processes and services, by identifying, quantifying and evaluating all the resources consumed and all the emissions and wastes released. The LCA methodology enables adequate comparison between different remediation options and can be used as a decision-making tool for the authorities. In this study, LCA was used to compare, in terms of their associated environmental burdens, two scenarios for managing the contaminated dredged sediments of the seabed of the Livorno Port area. The compared options were: (i) confined longshore disposal, i.e. placement of dredged material in a confined disposal facility; (ii) phytoremediation treatment, by an association of salt-tolerant shrub and grass species, aimed at turning the polluted sediment an agronomic substrate (techno-soil). The results of the life cycle impact assessment underline that the potential impacts of the two compared options involve different environmental problems. Indeed, for phytoremediation the most significant impacts are related to energy and resources consumption, while for the confined disposal are related to loads in the marine ecotoxicity categories. Therefore, phytoremediation can be considered a promising alternative solution for the management and valorization of contaminated dredged sediments

    Extreme value laws in dynamical systems under physical observables

    Get PDF
    Extreme value theory for chaotic dynamical systems is a rapidly expanding area of research. Given a system and a real function (observable) defined on its phase space, extreme value theory studies the limit probabilistic laws obeyed by large values attained by the observable along orbits of the system. Based on this theory, the so-called block maximum method is often used in applications for statistical prediction of large value occurrences. In this method, one performs inference for the parameters of the Generalised Extreme Value (GEV) distribution, using maxima over blocks of regularly sampled observations along an orbit of the system. The observables studied so far in the theory are expressed as functions of the distance with respect to a point, which is assumed to be a density point of the system's invariant measure. However, this is not the structure of the observables typically encountered in physical applications, such as windspeed or vorticity in atmospheric models. In this paper we consider extreme value limit laws for observables which are not functions of the distance from a density point of the dynamical system. In such cases, the limit laws are no longer determined by the functional form of the observable and the dimension of the invariant measure: they also depend on the specific geometry of the underlying attractor and of the observable's level sets. We present a collection of analytical and numerical results, starting with a toral hyperbolic automorphism as a simple template to illustrate the main ideas. We then formulate our main results for a uniformly hyperbolic system, the solenoid map. We also discuss non-uniformly hyperbolic examples of maps (H\'enon and Lozi maps) and of flows (the Lorenz63 and Lorenz84 models). Our purpose is to outline the main ideas and to highlight several serious problems found in the numerical estimation of the limit laws
    corecore